
Preprint ANL/MCS-P4068-0413

Real-time Stochastic Optimization of Complex
Energy Systems on High Performance Computers

Cosmin G. Petra
Argonne National Laboratory,

9700 S. Cass Avenue
Argonne, IL 60439

USA
petra@mcs.anl.gov

Olaf Schenk
Institute of Computational Science,

Faculty of Informatics,
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Abstract—We present a scalable approach that computes in
operationally-compatible time the energy dispatch under uncer-
tainty for complex energy systems of realistic size. Complex
energy systems, such as the US power grid, are affected by
increased uncertainty of its target power sources, due for example
to increasing penetration of wind power coupled with the
physical impossibility of very precise wind forecast. The leading
optimization under uncertainty paradigm for such problems,
stochastic programming, requires thousands of simultaneous
scenarios, giving problems with billions of variables that need
to be solved within an operationally defined time interval.
To address this challenge, we propose several algorithmic and
implementation advances inside our hybrid parallel optimization
solver PIPS-IPM. The new developments include a novel in-
complete augmented multicore sparse factorization implemented
within PARDISO linear solver and new multicore- and GPU-
based dense matrix implementations. We also adapt and improve
the interprocess communication strategy. Numerical experiments
on “Titan” (Cray XK7) and “Piz Daint” (Cray XC30) show
that 24-hour horizon problems with thousands of scenarios can
be efficiently solved in parallel in times compatible with the
operational practices. To our knowledge, “real-time” compatible
performance on a broad range of architectures for this class of
problems has not been possible prior to present work.

I. INTRODUCTION

In this paper, we present a scalable framework for solving
two-stage stochastic optimization problems with recourse aris-
ing in the optimization of power grid under uncertainty. The
problem we solve is the one of deciding the optimal operation
of electricity generation facilities to produce energy at the
lowest cost and to reliably serve consumers, recognizing any
operational limits of generation and transmission facilities.

In the US, power grid optimization problems are solved
by each of the 10 independent system operators (ISOs) [1].
In the form of unit commitment (UC), such problems are
the main component of day-ahead planning of generators and
electricity markets and they currently are solved faster than
1 hour [2]. In the form of economic dispatch (ED), these
optimization problems are used to balance supply and demand,
and they need to be solved within several minutes [2]. We
note that these time windows reflect current practice only,
and evolution of energy operations to include more renewable
energy dispatch are likely to both increase the size of the
problems and reduce the time horizon within which they

need to be solved. The economic footprint of such problems
is enormous; in the US, solving such problems results in
dispatch orders to generators that are worth several billions
to tens of billions of dollars per year per ISO, for a national
total of hundreds of billions of dollars per year. Their critical
contribution to the US economy has lead to their analysis as
technologies being specifically controlled by law, for example
in the Energy Policy Act of 2005, Sections 1298 and 1832.

In this paper, we focus on the computing challenges stem-
ming from one such evolutionary imperative: accounting for
the variability in energy supply availability that occurs when
renewable energy source such as wind are used by using
optimization under uncertainty techniques such as stochas-
tic optimization [3], [4], [5]. This results in vastly larger
optimizations problems, with several billions variables and
constraints, because a large number of possible realizations
of the uncertainty need to be considered to accurately capture
the stochastic component of the problem. As the problem
is very large and needs to be solved within restrictive time
limits, a high-end distributed memory supercomputing solution
is not only useful, it is also required. We have developed
PIPS-IPM optimization solver which implements an interior-
point methods and specialized sparse and dense linear algebra.
PIPS-IPM’s main computational bottleneck is the solution of
linear systems that needs to be solved at each step. Several
features of the problem beyond its large size create difficulties
in achieving high performance when solving it. Namely,

(i) the linear system has hybrid sparse and dense features,
stemming from the different nature of the two stages of
the problem;

(ii) direct sparse matrix factorizations needs to be used be-
cause the ill-conditioning of the linear systems due to the
use of interior-point methods makes iterative solvers inef-
fective both in terms of computational cost and accuracy
of the solutions;

(iii) the constraint matrix is a mix of power-flow constraints,
multiple technological constraints on the generators and
time replication, which makes virtually impossible to
tackle with sparsity in a structured way during sparse
factorizations;
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(iv) the matrices of interest are saddle-point matrices, being
symmetric and indefinite, and require advanced pivoting
and non-trivial solution-refinement techniques to maintain
numerical stability.

Our previous work used a BG/P platform and obtained more
than 90% parallel efficiency on up to 80% of “Intrepid” BG/P
of Argonne National Laboratory [6]. The study also identified
the intranode sparse scenario computations as being the bulk
of the execution time and the main barrier in solving power
grid optimization problems in “real-time”.

As a consequence we propose a novel algorithmic solution
for the sparse scenario computations that is based on a
incomplete augmented factorization approach [7] and achieves
good peak performance despite the complicating features of
the problem. As a result, the optimization problem can be
solved under the “real-time” requirement of the application.
We also depart significantly from our previous study in the
treatment of the two main computational bottlenecks of our
decomposition approach, namely dense linear algebra compu-
tations and communication. For this we present implementa-
tion improvements such as mixed CPU-GPU computations and
a new communication-computation pattern that make efficient
use of modern architectures such as Cray XK7 and Cray XC30
and facilitate very good parallel efficiencies.

Our large scale numerical experiments performed on “Titan”
XK7 machine from Oak Ridge National Laboratory and “Piz
Daint” XC30 machine from Swiss National Supercomputing
Centre show that these developments of this paper make
possible solving realistically-sized (24-hour horizon) with
thousands of scenarios in times that are considerably under
one hour. To the best of our knowledge, this has not been
possible before. We also observe very good strong scaling
efficiencies on both systems, 79.2% on “Piz Daint” and 87.0%
on “Titan”, despite the significant acceleration of the intranode
computations. The largest power grid optimization problem
we solved in this work is a 24-hour horizon unit commitment
problem with 16, 384 scenarios that has 1.95 billion variables
and 1.947 billion constraints. On 16, 384 nodes of “Titan”
(87.6% of the machine) we solved sparse indefinite linear
systems of size as large as 7.8 billion.

The outline of the paper is as follows. In Section II we
discuss the context of our work within the optimization of
power grid systems. In Section III we describe our decom-
position framework and in Section IV we present the new
algorithmic advances and implementation developments. The
numerical experiments as well as discussions of the parallel
performance under different efficiency metrics are presented
in Section V. We present our conclusions in Section VI.

II. MOTIVATING APPLICATION: STOCHASTIC UNIT
COMMITMENT FOR POWER GRID SYSTEMS

In our analysis, we consider a two-stage stochastic opti-
mization formulation for stochastic unit commitment [2]. The

problem has the following structure (c.f. [6]):

min

 T∑
k=0

∑
j∈G

fj · xk,j

+
1

N

∑
s∈N

 T∑
k=0

∑
j∈G

cj ·Gs,k,j


(1a)

s.t. Gs,k+1,j = Gs,k,j + ∆Gs,k,j , s ∈ N , k ∈ T , (1b)
j ∈ G∑

(i,j)∈Lj

Ps,k,i,j +
∑
i∈Gj

Gs,k,i =
∑
i∈Dj

Ds,k,i

−
∑
i∈Wj

Ws,k,i, s ∈ N , k ∈ T , j ∈ B (1c)

Ps,k,i,j = bi,j(θs,k,i − θs,k,j), s ∈ N , k ∈ T , (1d)
(i, j) ∈ L

0 ≤ Gs,k,j ≤ xk,jGmaxj , s ∈ N , k ∈ T , j ∈ G (1e)

|∆Gs,k,j | ≤ ∆Gmaxj , s ∈ N , k ∈ T , j ∈ G (1f)

|Ps,k,i,j | ≤ Pmaxi,j , s ∈ N , k ∈ T , (i, j) ∈ L (1g)

|θs,k,j | ≤ θmaxj , s ∈ N , k ∈ T , j ∈ B (1h)

xk,j ∈ {0, 1}, k ∈ T , j ∈ G (1i)

Here, G,L, and B are the sets of generators, lines, and
transmission nodes (intersections of lines, known as buses) in
the network in the geographical region, respectively. Dj and
Wj are the sets of demand and wind-supply nodes connected
to bus j, respectively. The symbol N denotes the set of
scenarios for wind level and demand over the time horizon
T := {0, ..., T}. The first stage decision variables are the
generator on/off states xk,j over the complete time horizon.
The decision variables in each second-stage scenario s are
the generator supply levels Gs,k,j for time instant k, and
bus j, the transmission line power flows Ps,k,j , and the bus
angles θs,k,j (which are related to the phase of AC current).
The random data in each scenario are the wind supply flows
Ws,k,i and the demand levels Ds,k,i across the network. The
values of Gs,0,j and x0,j are fixed by initial conditions. Further
modeling details can be found in previous references [8], [4].

In this work, we solve the convex relaxation of (1) obtained
by replacing the binary restrictions (1i) with the constraints
0 ≤ xk,j ≤ 1. This relaxation is the first step in virtually all
practical solutions of (1), it is the linear optimization problem
solved at the “root node” of branch-and-bound approaches.
Empirically, deterministic UC problems have been observed
to have a small gap between the optimal value of the convex
relaxation and the true optimal solution when combined with
cutting-plane techniques and feasibility heuristics [9]. This of-
ten implies that a sufficiently small gap is obtainable with little
or no enumeration of the branch-and-bound tree. Moreover, the
relaxation has the same structure as stochastic ED formations;
however, those need to be solved on a more stringent 5-minute
time scale, which is typically coupled with scenario pruning
techniques. So while we expect the performance reported
here to be comparable for stochastic ED problems for given
scenario set size, the actual performance needs more work for
comparison due to the variability of pruning strategies.
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Fig. 1: Network topology and snapshot of price distribution
(color map).

The convex relaxation of (1) is a very large linear opti-
mization problem and results in a problem of the form (4).
Our model incorporates the transmission network of the State
of Illinois, which contains approximately 2,000 transmission
nodes, 2,500 transmission lines, 900 demand nodes, and 300
generation nodes (illustrated in Figure 1). A deterministic
formulation over this geographical region, when expressed
over the standard T = 24 hours time horizon, can have up
to approximately 120, 000 variables and 119, 000 constraints.
These numbers are effectively multiplied by the number of
scenarios, which results into problems with several billion of
variables. Moreover, the size of the coupling is significant. The
number of variables in the first-stage block x0 of (2) is the
number of generators times the number of time steps, leading
to sizes of 6, 264, which makes parallel decomposition non-
trivial.

To summarize, the following features of our problem make
the development of high performance solutions such as the
ones described here, highly challenging:

1) the scenario subproblem (which is the main computation
per node) is sparse and unstructured, comprising of
irregular network-type constraints (1b), bus-angle con-
straints (1c), and technological constraints (1e)-(1g) that
are replicated over time.

2) the space+time+uncertainty characteristics of the prob-
lem give it effectively a “4D” flavor, and consequently,
enormous instances are obtained.

3) the presence of network constraints and inequalities re-

sults in problems with saddle-point structure and chang-
ing active sets, traditional issues that hamper high perfor-
mance.

III. COMPUTATIONAL APPROACH

Convex quadratic two-stage stochastic optimization prob-
lems with recourse are mathematically formulated as

min
x

(
1

2
xT0Q0x+ cT0 x0

)
+ Eξ[G(x0, ξ)]

s.t. T0x0 = b0, x0 ≥ 0,

(2)

where the recourse function G(x0, ξ) is defined by

G(x0, ξ) = min
x

1

2
xTQξx+ cTξ x

s.t. Tξx0 +Wξx = bξ, x ≥ 0.
(3)

The expected value E[·], which is assumed to be well defined,
is taken with respect to the random variable ξ, which contains
the data (Qξ, cξ, Tξ,Wξ, bξ). The matrix Qξ is assumed to
be positive semidefinite for all possible ξ. Wξ, the recourse
matrix, is assumed to have full row rank. Tξ, the technology
matrix, need not have full rank. The deterministic matrices
Q0 and T0 are assumed to be positive semidefinite and of full
row rank, respectively. The variable x0 is called the first-stage
decision, which is a decision to be made now. The second-
stage decision x is a recourse or corrective decision that one
makes in the future after some random event occurs. The
stochastic optimization problem finds the optimal decision to
be made now that has the minimal expected cost in the future.

Our computational approach focuses on solving sample
average approximation (SAAs) of stochastic optimization
problem (2). The SAA approach avoids the evaluation of
the expectation Eξ[G(x0, ξ)], which is usually impossible or
too expensive because it requires the evaluation of a highly-
dimensional integral. Instead, the SAA approach replaces the
expectation operator with the sample average

∑N
i=1G(x0, ξi)

computed by generating N samples (Qi, ci, Ti,Wi, bi) of ξ.
The resulting SAA problem is a convex quadratic optimization
problems with dual block-angular structure of the form

min
xi,i=0,...,N

1

2
xT0Q0x0 + cT0 x0 +

1

N

N∑
i=1

(
1

2
xTi Qixi + cTi xi

)
s.t. T0x0 = b0,

T1x0 + W1x1 = b1,
T2x0 + W2x2 = b2,
...

. . .
...

TNx0 + WNxN = bN ,
x0 ≥ 0, x1 ≥ 0 , x2 ≥ 0, . . . xN ≥ 0.

(4)
Our approach is to exploit the dual-block angular structure

of the SAA problem (4) and parallelize the computations in-
side the optimization algorithm, namely Mehrotra’s predictor-
corrector interior-point algorithm [10]. The computational
burden of the algorithm is on solving linear systems. The rest
of the computations (matrix-vector multiplications and vector-
vector operations) represent only a very small portion of the



computations and can be parallelized efficiently. In this section
we focus the presentation on the decomposition scheme used
to solve the interior-point linear systems. The reader is refered
to [6], [11] for a complete description of the approach.

The interior-point linear linear systems for the SAA prob-
lem (4) have a particular form, namely the system’s matrix is
of the form

K :=


K1 B1

. . .
...

KN BN
BT1 . . . BTN K0

 . (5)

Here

K0 =

[
Q0 +D0 TT0

T0 0

]
and Ki =

[
Qi +Di WT

i

Wi 0

]
are symmetric indefinite saddle-point linear systems, the 1×1
block Qi is symmetric positive definite and the 2× 2 block is
zero. Matrices Bi are given by

Bi =

[
0 0
Ti 0

]
.

Also, matrices D0, D1, . . . , DN are diagonal with positive
diagonal entries specific to the use of interior-point methods.
Some of the entries of these diagonal matrices approach
zero and other remain positive and of arbitrary size as the
interior-point optimization approaches the optimal solution,
causing the condition number of the Ki matrices to increase
unbounded. Close to optimality, linear systems can have a
condition number as large as 1025. This is the well-known ill-
conditioning of interior-point methods, a complicating feature
of this class of methods, which otherwise have the best known
complexity and convergence properties.

Decomposition of linear systems such as K is obtained by
using a Schur complement technique, which can be viewed as
block Gaussian elimination of the bordering blocks of (5).
First Schur complement C is computed,

C = K0 −
N∑
i=1

BTi K
−1
i Bi, (6)

and then the first-stage part of the solution is obtained by
solving

C∆z0 = r0 −
N∑
i=1

BTi K
−1
i ri. (7)

Finally, the second-stage part of the solution can be obtained
for all i = 1, . . . , N from

Ki∆zi = Bi∆z0 − ri. (8)

A quick look at (6)-(8) reveals great scope for parallelism.
More specifically the computation of the scenarios contribu-
tions BTi K

−1
i Bi to the Schur complement, the evaluation of

the residual in (7), and the solutions ∆zi, i = 1, . . . , N,
can be performed independently. Interprocess communication
occurs when assemblying the dense Schur complement matrix
C based on (6) and computing the residual in (7). Solving the

dense Schur complement system for z0 from (7) is a bottleneck
in this decomposition framework because the computations
needs to be performed on only one node (or replicated among
all nodes).

A similar decomposition approach is implemented in the
state-of-the-art software package OOPS [11], which was used
to solve many-stage stochastic optimization problems with 1
billion variables arising in portfolio optimization [11], [12].
The problems solved in the abovementioned work are consid-
erably different than ours because our application has compli-
cating coupling due to large number of first-stage variables.
We also mention the work of Linderoth and Wright [13]
which developed an asynchronous algorithm tailored for large
heterogeneous and unreliable computational grids. We also
mention PIPS-S [14] that is a parallel implementation of
revised dual simplex for dual block angular problems. Al-
ternative parallel decomposition techniques for the solution
of dual angular problems are reviewed by Vladimirou and
Zenios [15], however none of them have been implemented
on supercomputers nor attempted to solve problems as large
as ours.

Algorithm 1 lists an abstract view of our parallel im-
plementation. The verbs “reduce” and “broadcast” describe
the functionality of the MPI functions “MPI Reduce” and
“MPI Bcast”, respectively. In the subsequent sections we
present our algorithmic developement that speeds up the sparse
scenario computations of BTi K

−1
i Bi terms and the implemen-

tation optimizations that accelerate the solves with the dense
Schur complement matrix C and reduce the communication
overhead.

Algorithm 1 The parallel procedure implemented in PIPS-
IPM for solving the interior-point linear systems K based on
the Schur complement decomposition (6)-(8)

Distribute N scenarios evenly across P = {1, 2, . . . , P} processes and
let Np be the set of scenarios assigned to process p ∈ P .
Each process p ∈ P executes the following steps:

(factorization phase)
1.1. Factorize LiDiL

T
i = Ki for each i ∈ Np.

1.2. Compute SC contribution Si = BT
i K−1

i Bi for each i ∈ Np.
1.3. Accumulate Cp = −

∑
i∈Np

Si. On process 1, let C1 = C1 + K0.

2. Reduce SC matrix C =
∑
r∈P

Cr to process 1.

3. Factorize SC matrix LcDcLT
c = C in process 1.

(solve phase)
4.1. Solve wi = L−T

i D−1
i L−1

i ri for each i ∈ Np.
4.2. Compute vp =

∑
i∈Np

BT
i wi.

4.3. On process 1, let v1 = v1 + r0.

5. Reduce v0 =
∑
i∈Np

vi to process 1.

6.1. Solve ∆z0 = C−1v0 = L−T
c D−1

c L−1
c v0 in process 1.

6.2. Process 1 broadcasts z0 to all other processes.
7. Solve ∆zi = L−T

i D−1
i L−1

i (Bi∆z0 − ri) for each i ∈ Np.



IV. ALGORITHMIC ADVANCES

The sparse scenario computations of BTi K
−1
i Bi, steps 1.1

and 1.2 in Algorithm 1, were identified in [6] to account up to
95 percent of the wall-time, being the main obstacle in solving
realistically-sized stochastic power grid optimization problems
in times comparable with industry’s practices. Assemblying
and solving with the Schur complement, steps 2, 3 and 6.1
in Algorithm 1, are the next largest two components of the
execution time. In this section we address these computational
tasks from both an algorithmic and implementation perspective
with the specific goal of reducing their burden on the execution
time.

A. Multicore sparse second-stage linear algebra

As we previously mentioned, the data is sparse and unstruc-
tured in the case of our application, therefore the computation
of BTi K

−1
i Bi needs to rely on sparse linear algebra kernels.

Previously, we used off-the-shelf sparse linear solvers such as
WSMP [16] and MA57 [17] to first factorize Ki as LiDiL

T
i ,

then perform triangular solves with the factors of Ki for each
non-zero column of Bi, i.e., computing K−1i Bi, and, finally,
multiply the result from left with BTi .

This approach has two important drawbacks on multicore
environments: i. the triangular solves with Li and LTi do not
scale well with the number of cores [17], being memory-
bound; and ii. the sparsity of the columns of Bi is not exploited
when solving LiX = Bi, because off-the-shelf linear solvers
treat the right-hand sides Bi as dense.

To address these limitations we revisited these computations
and propose an approach that computes BTi K

−1
i Bi from a

partial sparse Bunch-Kaufman factorization of the augmented
matrix

Mi =

[
Ki BTi
Bi 0

]
. (9)

More specifically, the factorization of Mi is stopped after
pivoting reaches last diagonal entry of Ki. At this point
−BTi K

−1
i Bi is computed and resides in the (2, 2) block of

Mi.
Traditionally, the factorize phase has generally required

the greatest portion of the total execution time. It typically
involves the majority of the floating-point operations, and is
computation bound. However, in this application, we have
to compute BTi K

−1
i Bi, and memory traffic is the limiting

factor. In exploiting the sparsity not only in Ki, but also
in Bi we (i) significantly reduce the number of floating
point operations and (ii) can use in-memory sparse matrix
compression techniques to reduce the memory traffic on mul-
ticore architectures. In the numerical section we refer to this
compression techniques as PARDISO-SC whereas PARDISO
is the uncompressed triangular solve based on Ki. As a
result, the approach PARDISO-SC is much better suitable
for multicore parallelization than the triangular solves, and
consequently, the speed-up over the previous approach is quite
considerable, as we show in numerical experiments.

In this work, we use the augmented factorization method
that is implemented in PARDISO [7]. The solver uses a static

pivoting strategy [18], [19] and perturbs the matrix whenever
numerically acceptable pivots cannot be found within a di-
agonal supernode block. This means that only a perturbation
of BTi K

−1
i Bi is computed and therefore an error-absorption

phase is needed in order to obtain accurate solutions. We use
BiCGStab Krylov space iterative method, in which the the
perturbed factorization of C acts as a very efficient precondi-
tioner [7] and keeps the number of absorption BiCGStab steps
very low.

In terms of computational cost, each BiCGStab iteration
requires the application of the preconditioner, which is exactly
the solve phase of Algorithm 1, and the multiplication of K
with the residual. The rest of the computations consist of
local vector-vector operations of low cost that can be trivially
parallelized.

On the implementation side this method requires a
BiCGStab error-absorption loop wrapping the solve phase
in Algorithm 1, as compactly shown in Algorithm 2. The
complete details of this technique as well a specification of
the BiCGStab method are given in [7].

Algorithm 2 A compact description of our BiCGStab-based
technique for absorbing the pivot perturbations occurring in
the sparse scenario computations. It reuses the computational
components of Algorithm 1, the exact correspondence is
indicated by italicized statements.

(BiCGStab initialization)
compute the preconditioner (factorization phase of Algorithm 1)
compute initial point (solve phase of Algorithm 1)
compute initial residual (multiply with K)

(error-absorption BiCGStab loop)
while BiCGStab has not converged do

apply the preconditioner (solve phase of Algorithm 1)
compute residual (multiply with K)
BiCGStab iterate updates

end while

B. Intranode acceleration of dense first-stage linear algebra

We also revisit the computations needed for the first-
stage solution, namely steps 3. and 6.1. in Algorithm 1. The
Schur complement matrix C is dense since its computation
requires the matrix inversion (see formula (6)). Consequently,
storing and solving linear systems involving C is expensive.
Additionally, these computations are performed on one node
only; consquently, they have a considerable negative impact
on both the total time-to-solution and the parallel scalability.

On BG/P we distributed matrix C and used Elemental [20]
to solve the dense linear systems in parallel on all nodes. In
this work we take a different route since the both XC30 and
XK7 architectures have much faster nodes (both in terms of
clock rate and number of cores) and more and faster memory.
More specifically, we perform the first-stage computations
locally and accelerate them by involving multiple cores on
XC30 and GPU on XK7 in the linear solves.

On XC30, we use the LAPACK routines dsytrf (for the
symmetric indefinite factorization of C) and dsytrs (for the



triangular solves with the factors of C). We use Cray Scien-
tific Library (cray-libsci) implementation for both BLAS and
LAPACK. The BLAS implementation is multithreaded and
compatible with OpenMP.

The presence of the NVIDIA Tesla K20 GPU accelerator
on XK7 nodes is an opportunity to speed up the first-stage
computations, since GPUs are very suitable for dense linear al-
gebra operations. In our implementation we use routines from
MAGMA [21]. It offers an interface similar to LAPACK for
GPUs. We used the factorization routine magma dgetrf gpu
and triangular solve routine magma dgetrs gpu for general
square matrices since MAGMA 0.2, which is the latest version
at this moment, does not have a GPU implementation for
the factorization of symmetric indefinite matrices such as C.
Such implementation is capable to halve the solution time by
exploiting the symmetry.

C. Optimized communication pattern

The communication strategy presented in Algorithm 1 is
slightly different from our previous BG/P implementation
reported in [6]. On BG/P we performed “AllReduce” in steps
2 and 5 of Algorithm 1 since on BG/P MPI Allreduce is
much faster than MPI reduce (this anomaly is likely to be
caused by an implementation problem of BG/P’s MPI reduce).
Consequently, the dense factorization of C and the solves
with it (steps 3 and 6.1 in Algorithm 1) were replicated on
all nodes on BG/P. In this work we use MPI reduce and
assemble the Schur complement to MPI rank 0 only. The dense
computations are carried out in this process alone. The solution
is then broadcasted (MPI Bcast) to all other MPI ranks. This
is step 6.2 in Algorithm 1. This change in the communication-
computation pattern is about twice faster on both XC30 and
XK7 systems than the previous implementation. It is also more
efficient with respect to energy consumption since it does not
replicate computations unnecessarily.

V. NUMERICAL EXPERIMENTS

In this section we describe the experiments and investigate
the performance of our computational advances by looking at
several performance metrics and indicators such as intranode
thread affinity, weak and strong scaling, and sustained peak
performance. We also identify the bottlenecks of the decom-
position scheme discuss their impact on the performance.
Finally, we report on the time-to-solution for a 24-hour horizon
unit commitment problem with 16, 384 scenarios, 1.95 billion
variables and 1.947 billion constraints.

A. The architectures and the software environments

We use two architectures, Cray XK7 and Cray XC30.
The Cray XK7 compute nodes offers a hybrid environment,
having the AMD’s “Interlagos” Opteron 6200 Series 64-bit
processor and the NVIDIA’s Tesla K20x GPU Accelerator.
The CPU has 16 cores distributed on 8 Bulldozer modules
and 32GB DDR3 main memory. The K20x chip has one
Kepler GK110 GPU with 2, 688 cores and 6GB GDDR5
main memory. The connection between nodes is done using a

TABLE I: Average times per scenario needed for the sparse
scenario computation of BTi K

−1
i Bi on (a) a XK7 node and

(b) on a XC30 node with various number of threads and
MPI processes per node. The scenarios come from a 24-hour
horizon problem.

# of MPI (a) Number of threads per process on XK7

ranks 1 1 2 4 8 16

PARDISO PARDISO-SC

1 356.5 41.1 25.6 17.5 14.4 15.8

2 459.6 41.1 26.5 20.5 21.1

4 506.6 43.3 32.6 34.4

8 712.5 55.1 61.0

16 707.9 113.7

# of MPI (b) Number of threads per process on XC30

ranks 1 1 2 4 8 16

PARDISO PARDISO-SC

1 168.3 19.0 12.9 8.4 6.2 5.9

2 175.3 18.9 12.4 8.5 7.4

4 194.6 19.5 13.8 12.1

8 284.2 22.1 21.8

16 281.6 38.5

Gemini interconnect through HyperTransport 3.0 technology.
We use two deployments of this architecture, “Todi” from
Swiss National Supercomputing Centre, which has 272 nodes
and “Titan” machine from Oak Ridge National Laboratory,
which has 18, 688.

The Cray XC30 nodes are based on the Intel’s “Sandy-
Bridge” Xeon E5-2600 2×8-core 64-bit processor, each node
having 32GB of memory. The interconnect uses dragonfly
topology and Aries network chips. We have used the 2, 254-
nodes machine “Piz Daint” of Swiss National Supercomputing
Centre.

In all experiments we have used GNU compilers and Cray
Scientific Library implementation of BLAS and LAPACK. On
XK7 machines we have used MAGMA 0.2 and CUDA Toolkit
5.0. The FLOPS evaluation was done using Cray Performance
Analysis Tool (CrayPAT).

B. Intranode scaling and thread affinity

We investigate the behaviour of the new linear algebra de-
velopments presented in Section IV-A and IV-B on multicore
nodes.

We first tested different assignments of processes and
threads to physical cores and identified the core layouts that
makes the best use of memory hierarchy during our sparse
and dense computations. For XK7, we found that it is always
optimal to assign cores residing in the same NUMA region
to the same MPI process. On XC30 it is similar, in the sense
that it is optimal to keep MPI processes inside one of the
two 8-core processors. Multithreading is quite different on the
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PIPS-IPM for 16k scenarios on Cray XK7 ("Titan") 
(8k nodes, 16k MPI ranks, 64k threads, k=1,024) 

misc communication dense sparse BiCGStab iterations for predictor step

Fig. 2: Breakdown of the execution time for each iteration of PIPS-IPM when solving a 24-hour horizon problem with 16, 384
scenarios on 8, 192 nodes of “Titan” (16, 384 MPI ranks).

two systems. On XK7 there is no speed-up from running two
threads on the same bulldozer module. Our diagnosis tests
indicate that the cray-libsci BLAS, used both by LAPACK and
PARDISO-SC, does not share the Bulldozer module’s 256-bit
AVX floating point unit and the two threads runs sequentially.
This is a limiting factor in the performance of our code on
XK7 and we currently try to resolve this issue. On XC30,
multithreading is normal even in the extreme case when the
processors are saturated with threads.

Then we experiment with the number of MPI processes per
node and number of threads per MPI process and determine
the combination that gives the best execution times per sce-
nario. Table I displays the average execution times needed by
PARDISO-SC to compute BTi K

−1
i Bi on XK7 and XC30. For

reference, we also show the times of the “backsolve” approach
that we used in PIPS-IPM prior to this work to compute
BTi K

−1
i Bi, for which we have used PARDISO as an off-the-

shelf linear solver. We note that the augmented incomplete
factorization (“PARDISO-SC”) times are significantly smaller
than the “backsolve” (“PARDISO”) times.

It can be also seen in Table I that PARDISO-SC scales
reasonably well with the number of threads on both systems,
with the exception of XK7, there is no benefit of saturating the
node with threads, as we pointed out in the previous paragraph.

In term of FLOPS per node, PARDISO-SC is capable of
achieving about 25% of the node’s peak when used with 16
threads. These numbers includes all solution phases including
nested dissection based on METIS 5.1, structural and numer-
ical factorization and triangular solves. For the layout we use
in the large runs, that is 4 threads and 4 MPI processes,

PARDISO-SC obtained 1.61 GFLOPS per XC30 core and
15.5% of the XC30 node’s peak. This layout means that four
of the BTi K

−1
i Bi terms are computed on a node in the same

time. On XK7, PARDISO-SC attains 1.17 GFLOPS per core
when running 4 MPI processes, each with 2 threads, which is
about 14.6% of the core peak.

The dense factorization performed on XK7 using GPU and
Magma took approximately 0.7 seconds, which is indicates
to about 234 GFLOPS considering the complexity of a LU
factorization (we have not used CrayPAT since it does not
instrument CUDA code yet). As another comparison, the same
matrix can be factorized on XK7’s CPU using LAPACK with 4
threads as fast as 5.6 seconds. On XC30, the fastest LAPACK
dense factorization can be performed in about 4 seconds using
4 threads and achieves 3.89 GFLOPS per core, 37.4% of a
core’s peak.

C. Large scale simulations

In this section we report on the large scale performance
of PIPS on “Titan” XK7 and “Piz Daint” XC30. We report
strong scaling efficiency, which means that a 24-hour horizon
problem with 16, 384 scenarios was solved with increasingly
large number of nodes. This instance has a total of 1.95
billion variables and 1.947 billion constraints. Figure 3 show
the wall-time of one interior-point iteration, wall-times of
the computational sub-components and their ideal speed-ups
obtained on the two systems. On “Titan” we used 2 MPI
processes per node, each running 4 threads on 4 bulldozer
modules in the same NUMA region. On “Piz Daint” we used
4 MPI processes per node, each each running 4 threads. The
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Fig. 3: Strong scaling plots for “Titan” (left) and “Piz Daint” (right) for a 24-hour horizon problem with 16, 384 scenarios.
“Total” shows the time for one iteration averaged over the first 15 iterations. We also show execution times for the computational
sub-components: sparse scenario computations of BTi K

−1
i Bi by “sparse”, dense factorization by “dense” and communication

by “comm.”. The label “misc” refers both to time spent in the error-absorption phase as well as load imbalance. Dotted lines
show ideal speed-ups.

parallel efficiency of PIPS-IPM on “Titan” is 87.0% (from
2, 048 to 8, 192 nodes) and on ‘Piz Daint” is 79.2% (from
512 to 2048 nodes). The better parallel efficiency on “Titan”
despite a much large number of nodes is partially due to the
fact that the main computational bottleneck, i.e., the dense
first-stage factorization, is performed very fast on GPU.

The efficiencies on both machines are very high and close
to what we have previously observed on “Intrepid” BG/P
in [6], despite the acceleration of the intranode sparse scenario
computations and the slower interconnects that both “Titan”
and “Piz Daint” have. The one order of magnitued speed-up
of the sparse computations obtained given by the incomplete
augmented factorization algorithm would have significantly
reduced the parallel efficiency without our implementation de-
velopments that accelerate the dense computations and reduce
communication overhead.

On “Titan” we performed a weak scaling study, in which we
varied both the number of scenarios and nodes, keeping a ratio
of 2 scenarios per node (one scenario per MPI process). The
largest problem has 32, 768 scenarios (3.90 billion variables
and 3.895 billion constraints) and has been solved on 16, 384
nodes (87.6% of the machine). For this problem the size of
IPM linear system K is 7.8 billion. Figure 4 shows time
per iteration (average of the first 15 IPM iterations) and a
breakdown of the execution time for runs on 2, 048, 4, 096,
8, 192, and 16, 384 nodes. The parallel efficiency that is also
shown in Figure 4 is computed using the 2, 048-node run as
reference and, for the largest run being 97.7% percent. We
note that these are times per iteration and therefore they show

the efficiency of linear algebra developments, not of the entire
optimization solver. For similarly sized problems solved on
BG/P [7] we observed that the total number of IPM iterations
increases with about 10% each time the number of scenarios
is doubled. Based on this, we extrapolate that the efficiency
of the 16, 384 nodes simulation in terms of time-to-solution
would be in the vecinity of 72%.

D. Time-to-solution and peak performance considerations

We report wall-time needed to solve the 24-hour horizon
problem with 16, 384 scenarios to optimality. Our stopping
criteria consist of duality gap less than 10−6 and residual
norm less than 10−10. The former criterion indicates that the
objective value found by PIPS-IPM is within 6 significant
digits close to the optimal value, while the latter shows that
the constraints of the problem are satisfied within a 10−10

tolerance.
A total of 72 interior-point iterations was needed to solve

the problem. This was done in 37.54 minutes on “Titan” and
in 29.73 minutes on “Piz Daint”. The runs on the two systems
are the largest runs used in the strong scaling plots presented
in Figure 3. We also show in Figure 2 the breakdown of the
execution time for each interior-point iteration and the number
of BiCGStab error-absorption steps taken when computing
the predictor directions (similar number of BiCGStab steps
is needed for corrector directions).

We note in particular in Figure 2 that the well-known
ill-conditioning of interior-point linear systems that occurs
near the optimal solution does not increase the number of
BiCGStab steps significantly. This indicates that the pivot
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perturbations remain small when ill-conditioned linear systems
are encountered, a sign that the pivoting techniques inside
PARDISO-SC are numerically stable.

The “real-time” execution time we obtained on the two
systems are a consequence of a significant increase in FLOPS
rate. On “Piz Daint” XC30 CrayPAT reported 12.5% of the
peak when solving a problem with 8, 192 scenarios on 256

nodes (4 MPI ranks per node, 4 threads per process). FLOPS
peak evaluation for a larger number of nodes was impossible,
CrayPAT caused PIPS-IPM to hang. However, from the strong
scaling plot, one can infer that the peak performance on full
machine is about 10%. On XK7 such evaluation is not possible
with CrayPAT when CUDA code is enabled in PIPS-IPM. One
can extrapolate, based on the intranode performance of PIPS-
SC reported in Section V-B and the strong scaling efficiency
reported in Section V-C, that PIPS-IPM achieves on XK7 a
sustained CPU peak rate of the same order as on XC30, if
the base theoretical CPU peak for XK7 is calculated with one
core per bulldozer module.

The peak performance of 10% is at least acceptable in our
opinion, given the irregular memory access patterns of the
sparse linear algebra and the amount of integer operations
required by sparse factorizations and not included in FLOPS
evaluation. Direct factorizations of sparse matrices of similar
sizes as ours on supercomputers are reported in [16], where
it is reported a sustained peak performance similar to our,
approximately 12.6% of the peak (7.05 Teraflops on 4, 096
BG/P nodes). The authors of this work alo note this is the
highest known FLOPS rate for this class of matrices and these
class of computing platforms.

In addition, we mention that our novel algorithmic de-
velopments of the sparse linear algebra computations within
PARDISO-SC enabled us to obtain a factor of over 10 increase
in the FLOPS rate on every single core over the previous
version of PIPS-IPM. Before this work, PIPS-IPM was capable
of achieving a little bit more that 1% of the peak on a BG/P
platform [6].

The modification of the computation-communication strat-
egy we have done in this work, which causes only one node to
be involved in the first-stage computations, is a limiting factor
in achieving better peak performance. The alternative commu-
nication pattern, which we used on BG/P, would increase the
FLOPS rate but will perform poorer with respect to at least two
metrics: time-to-solution (due to communication overhead)
and energy consumption (due to replicating computations over
all nodes). In our opinion, this shows that peak performance
should be seen as a less relevant performance metric in the
case of our decomposition pattern and application.

Finally we present in Figure 5 a comparison of the compu-
tational cost of a IPM iteration and of the computational sub-
components of PIPS-IPM on two additional high-performance
computers, Cray XE6 “Rosa” (1, 496 nodes) from Swiss
National Supercomputing Centre and IBM BG/Q “Vesta” (1
cabinet, 2, 048 nodes) of Argonne National Laboratory. XE6
systems are similar to XK7, having two AMD “Interlagos”
processors per node (but no GPUs) and use a Gemini 3D
interconnect. BG/Q has 16 PowerPC A2 cores operating at
1600Mhz per node and uses a 5D torus interconnect. The
comparison of these systems is meant to provide a guideline
on the role played by hardware on the solution times. In
particular we note considerably longer execution times on
BG/Q due to slower cores, an important reduction in the dense
computations on XK7 over the similar XE6 due to the use of



GPUs and a very fast interconnect on BG/Q. XC30 is the
fastest platform by a large margin due to the performance of
“SandyBridge” XEONs. In the case of our application, where
virtually hundreds of gigawatts are dispatched every day based
on UC and ED models, the high energy per flops ratio of XC30
platforms may be less relevant and systems of this type look
appealing from an operational perspective.

VI. CONCLUSIONS

In this work we adressed the issue of solving complex
energy systems optimization problems with thousands of un-
certain scenarios in times comparable to the ones required by
the operational practices of power grid operators. For this we
have proposed and implemented in PARDISO a novel multi-
threaded restructuration of the sparse linear algebra second-
stage computations of PIPS-IPM. This approach makes very
efficient use of the multi-core nodes, gives a drastic reduction
in the execution times and makes possible “real-time” solution
to our power grid optimization problems. We also addressed
and considerably reduced the bottlenecks of our decomposition
scheme, namely the first-stage dense factorizations and the
communication, which translated in very good parallel effi-
ciencies on thousands of nodes of two modern supercomputers.

Several other improvements will be required before possible
deployment, and that includes refining the solution to obtain
a good integer one for UC problems and exploiting within-
scenario parallelism for ED problems. These are both non-
trivial tasks, however, we point out that solving the relaxation
is an essential first step to get to that level of performance
for UC, and several heuristics exist to refine the solution to a
good integer one. Moreover, the massive economic importance
of solving this problem in a timely fashion coupled with the
stochasticity prompted by renewable energy imperatives makes
this first step, where we achieve timings compatible with the
real time requirements of the operators, a very important one.
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